2D-LDA: A statistical linear discriminant analysis for image matrix

نویسندگان

  • Ming Li
  • Baozong Yuan
چکیده

This paper proposes an innovative algorithm named 2D-LDA, which directly extracts the proper features from image matrices based on Fisher s Linear Discriminant Analysis. We experimentally compare 2D-LDA to other feature extraction methods, such as 2D-PCA, Eigenfaces and Fisherfaces. And 2D-LDA achieves the best performance. 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional-Oriented Linear Discriminant Analysis for Face Recognition

In this paper, a new statistical projection-based method called Two-DimensionalOriented Linear Discriminant Analysis (2DO-LDA) is presented. While in the Fisherfaces method the 2D image matrices are first transformed into 1D vectors by merging their rows of pixels, 2DO-LDA is directly applied on matrices, as 2D-PCA. Within and between-class image covariance matrices are generalized, and 2DO-LDA...

متن کامل

Line-Based PCA and LDA Approaches for Face Recognition

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) techniques are important and well-developed area of image recognition and to date many linear discrimination methods have been put forward. Despite these efforts, there persist in the traditional PCA and LDA some weaknesses. In this paper, we propose a new Line-based methodes called Line-based PCA and Line-based LDA that ...

متن کامل

Block LDA for Face Recognition

Linear Discriminant Analysis (LDA) technique is an important and well-developed area of image recognition and to date many linear discrimination methods have been put forward. Despite these efforts, there persist in the traditional LDA some weaknesses. In this paper, we propose a new LDA-based method called Block LDA (BLDA) that can outperform the traditional Linear Dicriminant Analysis (LDA) m...

متن کامل

Separable linear discriminant analysis

Linear discriminant analysis (LDA) is a popular technique for supervised dimension reduction. Due to the curse of dimensionality usually suffered by LDA when applied to 2D data, several two-dimensional LDA (2DLDA) methods have been proposed in recent years. Among which, the Y2DLDA method, introduced by Ye et al. (2005), is an important development. The idea is to utilize the underlying 2D data ...

متن کامل

New Feature Extraction Approaches for Face Recognition

All the traditional PCA-based and LDA-based methods are based on the analysis of vectors. So, it is difficult to evaluate the covariance matrices in such a high-dimensional vector space. Recently, two-dimensional PCA (2DPCA) and two-dimensional LDA (2DLDA) have been proposed in which image covariance matrices can be constructed directly using original image matrices. In contrast to the covarian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005